15. Св-ва непрерывных ф-ций:в в отрезке: 1. Если ф-ция y=f(x) непрерывна на [a,b] и f(a)*f(b)<0, т.е. знаки f(a) и f(b) противоположны, то на (a,b) найдется хотя бы одна точка х=с, что f(c)=0 (график)-теорема Больцана-Коши. 2. Если ф-ция y=f(x) непрерывна на [a,b], то она ограничена на этом промежутке. 3. Если ф-ция y=f(x) непрерывна на [a,b], то она достигает на этом отрезке min m и max M (теорема Вейерштрасса). в точке: 1. если ф-ция f(x) и g(x) непрерывна в х0, то их сумма, произведение, частное (при ?(х0)?0) явл-ся ф-циями, непрерывными в х0 2. если ф-ция y=f(x) непрерывна в х0, и f(x0)>0, то существует окрестность х0, в которой f(x)>0 3. если y=f(U) непрерывна в U0, а U=?(x) непрерывна в U0=?(x0), то сложная ф-ция y=f[?(x)] непрерывна в х0.