4Первый замечательный предел равен
Доказательство. Рассмотрим два односторонних предела и и докажем, что каждый из них равен 1. Тогда по теореме 2.1 двусторонний предел также будет равняться 1.
Итак, пусть (этот интервал -- одно из окончаний базы ). В тригонометрическом круге (радиуса ) с центром построим центральный угол, равный , и проведём вертикальную касательную в точке пересечения горизонтальной оси с окружностью (). Обозначим точку пересечения луча с углом наклона с окружностью буквой , а с вертикальной касательной -- буквой ; через обозначим проекцию точки на горизонтальную ось.
Пусть -- площадь треугольника , -- площадь кругового сектора , а -- площадь треугольника . Тогда очевидно следующее неравенство:
Заметим, что горизонтальная координата точки равна , а вертикальная -- (это высота треугольника ), так что . Площадь центрального сектора круга радиуса с центральным углом равна , так что . Из треугольника находим, что . Поэтому Неравенство, связывающее площади трёх фигур, можно теперь записать в виде
Все три части этого неравенства положительны, поэтому его можно записать так:
или (умножив на ) так:
Предел постоянной 1 в правой части неравенства, очевидно, равен 1. Если мы покажем, что при предел в левой части неравенства тоже равен 1, то по теореме "о двух милиционерах" предел средней части также будет равен 1.
Итак, осталось доказать, что . Сперва заметим, что , так как равняется длине дуги окружности , которая, очевидно, длиннее хорды . Применяя теорему "о двух милиционерах" к неравенству
при , получаем, что
Простая замена переменной показывает, что и . Теперь заметим, что . Применяя теоремы о линейности предела и о пределе произведения, получаем:
Тем самым показано, что
Сделаем теперь замену ; при этом база перейдёт в базу (что означает, что если , то ). Значит,
но ( -- нечётная функция), и поэтому Мы показали, что левосторонний предел также равен 1, что и завершает доказательство теоремы
В9.Второй замечательный предел
Теорема lim(1+1/x)x=e
x®+¥
Доказательство:Пусть n – целая часть х – n=[x] n£x<n+1
[1+1/(n+1)]n£(1+1/x)x£(1+1/n)n+1
Если x®+¥, то n®+¥
[1+1/(n+1)]n+11/[1+1/(n+1)]£(1+1/x)x£(1+1/n)n(1+1/n) Þ lim(1+1/x)x=e
x®+¥